Development of Bismuth Telluride Nanostructure Pellet for Thermoelectric Applications


The bismuth telluride (Bi2Te3) nanostructure pellet was successfully developed for thermoelectric applications by using a simple chemical process. The different type of measurements such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and Fourier transform infrared spectrometry (FT−IR) were employed to the synthesize Bi2Te3 nanostructure powders and pellets. The XRD, SEM and EDX showed that the pellet were contain the Bi2Te3. The average crystalline size of the pellet was 3.93 nm. The AFM studies also confirmed that the pellet was nanostructure form and average surface roughness value was 68.06 nm. The FTIR spectrum of the developed pellet had a similar behavior of Bi2Te3 nanostructure form.


Bismuth Telluride (Bi2Te3); Nanostructure pellet; Chemical process; Microstructural properties; Thermoelectric

DOI: 10.17350/HJSE19030000106

Full Text: page_white_acrobat.png


Download data is not yet available.


1. Akshay, V.R., Suneesh, M.V., Vasundhara, M., 2017, “Tailoring thermoelectric properties through structure and morphology in chemically synthesized n˗Type bismuth telluride nanostructures”. Inorganic Chem. 56 (11), 6264˗74.

2. Dharmaiah, P., Hong, S.J., 2017, “Thermoelectric properties of Bi2Te3 nanocrystals with diverse morphologies obtained via modified hydrothermal method”. J. Electronic Materials. 6(5), 3012˗19.

3. Dharmaiah, P., Lee, C., Madavali, B., Hong, S.J., 2017, “Effect of surfactant addition on Bi2Te3 nanostructures synthesized by hydrothermal method”. Archives of Metallurgy and Materials. 62(2), 1005˗1010.

4. Sharma, Y.C., and Purohit, A., 2016, “Tellurium based thermoelectric materials: new directions and prospects”. J. Integrated Sci. and Techn., 4(1), 29˗32.

5. Hong, M., Chen, Z.G., Yang, L., and Zou, J., 2016, “Enhancing thermoelectric performance of Bi2Te3˗based nanostructures through rational structure design”. Nanoscale, 8(16), 8681˗8686.

6. Smith, C.J.W., Cahill, J.S., and Nuhoglu, A., 2016, “Macro to nano: scaling effects of Bi2Te3 thermoelectric generators for applications in space. PAM Review: Energy Sci. Tech., 3, 86˗99.

7. Ng, I.K., Kok, K.Y., Rahman, C.C.A., Choo, T.F., and Saidin, N.U., 2016, “Bismuth telluride based nanowires for thermoelectric power generation. Materials Today: Proceedings, 3(2), 533˗537.

8. Razak, A.N.A., Nor, N.M., and Ibrahim, T., 2011, “Heat energy harvesting for portable power supply. 5th International Conference on Power Engineering and Optimization. IEEE, 436˗439.

9. Rashad, M.M., El˗Dissouky, A., Soliman, H.M., Elseman, A.M., Refaat, H.M., Ebrahim, A., 2017, “Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity”. Materials Research Innovations. 22, 1˗9.

10. Pradhan, S., Das, R., Bhar, R., Bandyopadhyay, R., Pramanik, P., 2017, “A simple fast microwave˗assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction˗mixture”. J. Nanoparticle Research. 19(2), 69.

11. Sherchenkov, A.A., Shtern, Y.I., Shtern, M.Y., and Rogachev, M.S., 2016, “Prospects of creating efficient thermoelectric materials based on the achievements of nanotechnology”. Nanotechnologies in Russia, 11(7˗8), 387˗400.

12. Cornett, J., Chen, B., Haidar, S., Berney, H., McGuinness, P., Lane, B., Gao, Y., He, Y., Sun, N., Dunham, M., Asheghi, M., 2017, “Fabrication and Characterization of Bi2Te3˗based chip˗scale thermoelectric energy harvesting devices”. J. Electronic Maters. 46(5), 2844˗46.

13. Ge, Z.H., Ji, Y.H., Qiu, Y., Chong, X., Feng, J., He, J., 2018, “Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride˗spilling during the spark plasma sintering process”. Scripta Materialia. 143, 90˗93.

14. Gaul, A., Peng, Q., Singh, D.J., Ramanath, G., Borca˗Tasciuc, T., 2017, “Pressure˗induced insulator˗to˗metal transitions for enhancing thermoelectric power factor in bismuth telluride˗based alloys”. Physical Chem. Chemical Phys.
19(20), 12784˗93.

15. Yamashita, O., Tomiyoshi, S., Makita, K., 2003, “Bismuth telluride compounds with high thermoelectric figures of merit”. J. Applied Physics. 93(1), 368˗74.

16. Fu, J., Shen, J., Shi, H., Liang, Y., Qu, Z., and Wang, W., 2016, “Preparation and characterization of single crystalline structure Sb/Bi2Te3 superlattice nanowires”. Micro and Nano Letters, 11(11), 738˗740.

17. Son, J.S., Choi, M.K., Han, M.K., Park, K., Kim, J.Y., Lim, S.J., Ho, M., Kok, Y., Park, chan., Kim, S.J., and Hyeon, T., 2012, “n˗Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates”. Nano letters, 12(2), 640˗647.

18. Ganguly, S., Zhou, C., Morelli, D., Sakamoto, J., and Brock, S. L., 2012, “Synthesis and characterization of telluride aerogels: effect of gelation on thermoelectric performance of Bi2Te3 and Bi2–xSbxTe3 nanostructures”. The J. Physical Chem. C, 116(33), 17431˗17439.

19. Sharma, S., and Schwingenschlögl, U., 2016, “Thermoelectric response in single quintuple layer Bi2Te3”. ACS Energy Letters, 1, 875˗879.

20. Barman, S.C., Saha, D.K., Mamur, H., Bhuiyan, M.R.A., 2016, “Growth and description of Cu nanostructure via a
chemical reducing process”. J Nanosci Nano Engg and Appls., 6(3), 27–31.

21. Bhuiyan, M.R.A., Alam, M.M., Momin, M.A., Rahman, M.K., Saha, D.K., 2014, “Growth and characterization of CuInSe2 nanoparticles for solar cell applications”. J Alternate Energy Sources and Tech., 5(1), 13–17.

22. Bhuiyan, M.R.A., Alam, M.M., Momin, M.A., Mamur, H., 2017, “Characterization of Al doped ZnO nanostructures via an electrochemical route”. Int. J. Energy Appls. and Tech., 4(1), 28˗33.

23. Bhuiyan, M.R.A., and Rahman, M.K., 2014, “Synthesis and characterization of Ni doped ZnO nanoparticles”. Int. J. Engg. and Manufact., 3, 67˗73.

24. Bhuiyan, M.R.A., Mamur, H., 2016, “Review of the bismuth telluride (Bi2Te3) nanoparticle: growth and characterization”. Int. J. Energy Appls. and Tech., 3, 74–78.

25. Bhuiyan, M.R.A., Mamur, H., Korkmaz, F., and Nil, M., 2018, “A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications”. Renew. Sust. Energy Reviews, 82(3), 4159˗4169.

26. Burton, A.W., Ong, K., Rea, T., Chan, I.Y., 2009, “On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one˗dimensional pore systems”. Microporous and Mesoporous Materials. 117(1), 75–90.

27. Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C., Weller, H., 2009, “Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles”. Advan. Functional Maters., 19(21), 3476–83.

28. Saleemi, M., Toprak, M.S., Li, S., Johnsson, M., Muhammed, M., 2012, Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Materials Chem., 22(2), 725˗30.

29. Kim, D.H., Kim, C., Ha, D.W., Kim, H., 2011, “Fabrication and thermoelectric properties of crystal˗aligned nano˗structured Bi2Te3”. J. Alloys and Compounds. 509(17), 5211–15.

30. Zhao, X.B., Ji, X.H., Zhang, Y.H., Cao, G.S., Tu, J.P., 2005, “Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder”. Applied Physics A, 80(7), 1567–71.

31. Tezuka, K., Kase, S., Shan, Y.J., 2014, “Syntheses of Bi2X3 (X= S, Se, Te) from elements under hydrothermal conditions”. J. Asian Ceramic Societies, 2(4), 366–70.

32. Macedo, R.J., Harrison, S.E., Dorofeeva, T.S., Harris, J.S., and Kiehl, R.A., 2015, “Nanoscale probing of local electrical characteristics on MBE˗grown Bi2Te3 surfaces under ambient conditions”. Nano letters, 15(7), 4241˗4247.

33. Du, Y., Cai, K.F., Shen, S.Z., An, B., Qin, Z., and Casey, P.S., 2012, “Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials”. J. Mater. Sci.: Maters. Elec., 23(4), 870˗876.
How to Cite
Mamur, H., & Bhuiyan, M. (2018). Development of Bismuth Telluride Nanostructure Pellet for Thermoelectric Applications. Hittite Journal of Science & Engineering, 5(4), 293-299. Retrieved from