Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries

  • Asuman Celik Kucuk Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey http://orcid.org/0000-0002-3509-1497
  • Samet Ozturk Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey http://orcid.org/0000-0002-9175-4347
  • Baris Cem Alpay Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey
  • Mine Yorulmaz Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey

Abstract

In this study, SixSb immiscible blend anode materials have been synthesized using micron-sized silicone and antimony particles in different compositions through chemical reduction-mechanical alloying method (CR-MA). The obtained microstructures have been investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX). Spectroscopic characterizations have displayed that traditional intermetallic compounds cannot be achieved however a novel immiscible blend system can be. Si0.65Sb exhibits an initial capacity of 790 mAh g-1 and a good cyclic stability compared to the pure silicone. The battery performance results of the micron-sized Si0.65Sb blend system have been compared with graphite and the nano-sized Si/Sb alloy systems. It has been found that there is an improvement in cycling stability compared to nano-sized Si/Sb alloy systems and in specific capacity compared to commercial graphite anode material. This result obviously portrays the importance of micron sized Si/Sb system in large-scale applications due to its low cost.

Keywords:

Silicon-Antimony based materials; Negative electrode; Li-ion battery

DOI: 10.17350/HJSE19030000085

Full Text: page_white_acrobat.png

Downloads

Download data is not yet available.

References

1. Goodenough, J.B.; Park, K.S.; J. Am. Chem. Soc 2013, 135, 1167–1176

2. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.

3. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70, 48-54.

4.Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Nat Nanotechnol 2008, 3, 31 – 35.

5. Peng K.; Jie J.; Zhang W.; Appl Phys Lett 2008, 93, 033105.

6. Al-Maghrabi, M.A.; Thorne, J.S.; Sanderson, R.J.; Byers, J.N.; Dahn, J.R.; Dunlap, R.A.; J., Electrochem. Soc. 2012, 159, A119–A711.

7. Zhang, W.-J.; J. Power Sources 2011, 196, 13–24.

8. Yue, L.; Zhong, H.; Tang, D.; Zhang, L.; J. Solid State Electrochem. 2013, 17, 961– 968.

9. Astrova, E.V.; Fedulova, G.V.; Smirnova, I.A.; Remenyuk, A.D.; Kulova, T.L.; Skundin, A.M.; Technol. Phys. Lett. 2011, 37, 7 31–7 3 4 .

10. Wang, M.S.; Fan L.Z.; J. Power Sources 2013, 244 570–574.

11. Zhang, K.; Zhao, Q.; Tao, Z.; J. Chen, Nano Res 2013, 6, 38–46.

12. Hu, Y.S.; Demir-Cakan, R.; Titirici, M.M.; Muller, J.O.; Schlogl, R.; Antonietti, M.; J. Maier, Angew. Chem. 2008, 47, 1645–1649.

13. Liu, W.R.; Yen, Y.C.; Wu, H.C.; Winter, M.; Wu, N.L.; J. Appl. Electrochem 2009, 39, 1643–1649.

14. Vadchenko, S.G.; Sytschev, A.E.; Kovalev, D.Y.; Shchukin, A.S.; Konovalikhin, S.V.; Nanotechnologies in Russia 2015, 10 , 67–74 .

15. Konovalikhin, S.V.; Kovalev, D.Y.; Sytschev, A.E.; Vadchenko, S.G.; Shchukin, A.S.; Int. J. Self-Propag. High-Temp. Synth 2014, 23, 217–221.

16. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J.P.; Fromm, O.; Vortmann, B.; Winter, M.; Placke T.; ACS Appl. Mat. Interfaces 2015, 7, 1508–1515.

17. Wang, X.; Wen, Z.; Liu, Y.; Xu, X.; Lin, J.; Journal of Power Sources 2009, 189 121–126.

18. Chen, Y.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; ACS Appl. Mat. Interfaces 2012, 4, 3753–3758.

19. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N.S.; Park, S.; ACS Appl. Mat. Interfaces 2014, 6, 16360– 16367.

20. Huggins, R. A., Advanced Batteries: Materials Science Aspects 1sted.; Springer, LLC: New York, NY, 2009.

21. Wang, J.; Wang, Y.; Zhang, P.; Zhang, D.; Ren, X.; Journal of Alloys and Compounds 2014, 610, 308–314.

22. Deng, D.; Energy Science and Engineering 2015, 3, 385–418.

23. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.

24. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70 48-54.

25. Kim, H.; Choi, J.; Sohn, H.J.; Kang, T.; J. Electrochem. Soc. 1999, 146(12), 4401–4405.

26. Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.; J. Solid State Chem. 2000, 153(2), 386–390.

27. Roberts, G.A.; Cairns, E.J.; Reimer, J.A.; J. Power Sources 2002, 110(2), 424–429.
Published
2018-04-06
How to Cite
Celik Kucuk, A., Ozturk, S., Alpay, B., & Yorulmaz, M. (2018). Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries. Hittite Journal of Science & Engineering, 5(2), 137-140. Retrieved from https://www.hjse.hitit.edu.tr/hjse/index.php/HJSE/article/view/HJSE19030000085
Section
ENGINEERING