Mineralogical and Geochemical Characterization of Ancient Ceramic Sherds from Dipsizin Cave (Karaman, Turkey)

  • Mehmet Yavuz Hüseyinca Selçuk University, Department of Geological Engineering, Konya, TURKEY http://orcid.org/0000-0003-3863-6170
  • Osman Doğanay Aksaray University, Department of Archaeology, Aksaray, TURKEY


Raw materials of two ancient ceramic sherds (ceramic-1 and ceramic-2) from Dipsizin cave were analysed by SEM-EDS in order to characterize ceramic fabrics. Characterization includes seperation of temper and clay paste sections, qualitative determination of mineralogic compositions and percentage calculations of raw materials by region sketching. In this perspective, ceramic-1 is characterized as % 41.83 temper (quartz, albite, rutile, lime, organic material) and % 58.17 clay paste. Then, ceramic-2 is characterized to be % 37.52 temper (quartz, anorthoclase, rutile, lime, organic material) and % 62.48 clay paste. Clay paste sections of both ceramics include mixture of clay minerals belonging to illite and smectite clay groups. In comparison, percentages of temper and clay paste sections of ceramic-1 and ceramic-2 differ % 4.31 from each other and variety of raw materials making up both ceramic bodies are nearly same except feldspars. But individually quartz and lime percentages between ceramics differ nearly two times. In this opinion we realize that raw materials are mixed by tracking two recipes. These recipes can be explained by different pottery making technologies and/or different provenances.


Ceramic sherd; Characterization; Dipsizin Cave; Region sketching; Sarıveliler; SEM-EDS

DOI: 10.17350/HJSE19030000078

Full Text: page_white_acrobat.png


Download data is not yet available.


1. Heinrich, K, Asia citerior, in: David Rumsey historical map collection, Dietrich Reimer, Berlin, 1903.

2. Doğanay, O, Duman, B. Isauria bölgesi’nden bir grup seramik: Adiller Dipsizin mağarası, in: Ş. Dönmez (Ed.) Sümer Atasoy'a armağan yazılar, Hel Yayınları, Ankara, pp. 83-94, 2013.

3. Tite, MS. The impact of electron microscopy on ceramic studies. Proceedings of the British Academy 77 (1992) 111- 131.

4. Guggenheim, S, Martin, RT. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals 43 (1995) 255-256.

5. Mukherjee, S. The science of clays, Springer Netherlands, India, 2013.

6. Rapp, G. Archaeomineralogy, second ed. Springer, Berlin Heidelberg, 2009.

7. Shepard, AO. Ceramics for the archaeologist, Carnegie institution, Washington, 1956.

8. Dickinson, WR. Petrographic temper provinces of prehistoric pottery in Oceania. Records of the Australian Museum 50 (1998) 263-276.

9. Özgül, N. Torosların bazı temel jeolojik özellikleri. Türkiye Jeoloji Kurumu Bülteni 19 (1976) 65-78.

10. Özgül, N. Bozkır-Hadim-Taşkent (Orta Toroslar'ın kuzey kesimi) dolayında yer alan tektono-stratigrafik birliklerin stratigrafisi. Maden Tetkik ve Arama Dergisi 119 (1997) 113-174.

11. Özgül, N, Arpat, E. Structural units of Taurus orogenic belt and their continuation in the neighbouring regions. Geological Society of Greece Bulletin 10 (1973) 156-164.

12. Gutnic, M, Monod, O, Poisson, A, Dumont, JF. Geeologie des Taurides occidentales (Turquie), Societe Geologique de France, Paris, 1979.

13. Gedik, A, Birgili, Ş, Yılmaz, H, Yoldaş, R. Mut-Ermenek- Silifke Yöresinin Jeolojisi ve Petrol Olanakları. Türkiye Jeoloji Kurumu Bülteni 22 (1979) 7-26.

14. Bassant, P, Van Buchem, FSP, Strasser, A, Görür, N. The stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. Sedimentary Geology 173 (2005) 187-232.

15. Reed, SJB. Electron microprobe analysis and scanning electron microscopy in geology, Cambridge University Press, U.K., 2005.

16. Goldstein, JI, Newbury, DE, Echlin, P, Joy, DC, Fiori, C, Lifshin, E. Scanning electron microscopy and X-Ray microanalysis, Plenum Publishing, New York, 1981.

17. Tite, MS, Freestone, IC. The use of scanning electron microscopy in the technological examination of ancient ceramics, in: J.S. Olin, A.D. Franklin (Eds.) Archaeological Ceramics, Smithsonian Institution Press, Washington, pp. 109-120, 1982.

18. Freestone, IC, Middletonand, AP. Mineralogical applications of the analytical SEM in archaeology. Mineralogical Magazine 51 (1987) 21-31.

19. Froh, J. Archaeological ceramics studied by scanning slectron microscopy. Hyperfine Interactions 154 (2004) 159 -176 .

20. Laviano, R, Muntoni, IM. Provenance and technology of Apulian Neolithic pottery, in: M. Maggetti, B. Messiga (Eds.) Geomaterials in Cultural Heritage Geological Society Special Publications, London, pp. 49-62, 2006.

21. Wassilkowska, A, Czaplicka-Kotas, A, Zielina, M, Bielski, A. An analysis of the elemental composition of micro-samples using EDS technique. Technical Transactions 1 (2014) 133- 148.

22. Morton, AC. Stability of detrital heavy tertiary sandstones from the north sea basin. Clay minerals 19 (1984) 287-308.

23. Pettijohn, FJ, Potter, PE, Siever, R. Sand and Sandstone, Springer New York, 1987.

24. Force, ER. Geology of titanium-mineral deposits, Geological Society of America, U.S.A, 1991.

25. Cox, R, Lowe, DR, Cullers, RL. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59 (1995) 2919-2940.
How to Cite
Hüseyinca, M., & Doğanay, O. (2018). Mineralogical and Geochemical Characterization of Ancient Ceramic Sherds from Dipsizin Cave (Karaman, Turkey). Hittite Journal of Science & Engineering, 5(2), 91-95. Retrieved from https://www.hjse.hitit.edu.tr/hjse/index.php/HJSE/article/view/HJSE19030000078