Magnetic Properties of Manganese Ferrite (MnFe2O4) Nanoparticles Synthesized by Co-Precipitation Method

  • Evrim Umut Dokuz Eylul University, School of Healthcare, Department of Medical Imaging Techniques, Balcova, Izmir, Turkey http://orcid.org/0000-0003-0344-1365

Abstract

In the presented study, manganese ferrite (MnFe2O4) nanoparticles were synthesized by applying a modified co-precipitation method based on the decomposition of metallic precursors in a liquid phase environment in the presence of surfactant oleic acid. The syn-thesized sample was then characterized with X-ray Diffraction (XRD), standard and high resolution Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR), which revealed that the as-prepared MnFe2O4 particles are monodis-persed nanocrystals with an average size of 4.7 nm and well surrounded with dimeric oleic acid coating. The magnetic properties of nanoparticles were first investigated by means of Superconducting Quantum Interference Device (SQUID) magnetometry. The tempera-ture and field dependent magnetization measurements showed that the MnFe2O4 nano-particles exhibit superparamagnetic property with zero coercivity at room temperature and thermal irreversibility. The superparamagnetic behavior of MnFe2O4nanoparticles was further confirmed by conducting zero field Mössbauer Spectroscopy measurements on nanoparticle powders. As to fulfill all the requirements like crystallinity, small size and su-perparamagnetism, the prepared oleic acid coated MnFe2O4 nanoparticles has the potential to be used in biomedical applications like targeted drug delivery, MRI and hyperthermia.

Keywords:

Superparamagnetism, Manganese ferrite, Magnetic nanoparticles, SQUID magnetometry, Mössbauer spectroscopy.

DOI: 10.17350/HJSE19030000154

Full Text: page_white_acrobat.png

Downloads

Download data is not yet available.

References

1.Umut E, Surface modification of nanoparticles used inbiomedical applications, in: Mahmood Aliofkhazraei (Ed.),Modern Surface Engineering Treatments, IntechOpen Ltd.,London, pp.185-208, 2013.

2.Kim DH, Nikles DE, Brazel CS. Synthesis and characterization of multifunctional chitosan - MnFe2O4 nanoparticles formagnetic hyperthermia and drug delivery. Materials

3(2010) 4051-4065.3.Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S. Water-soluble superparamagnetic manganese ferritenanoparticles for magnetic resonance imaging. Biomaterials 31 (2010) 3667-3673.

4.Liu C, Zou B, Rondinone AJ, Zhang ZJ. Reverse micellesynthesis and characterization of superparamagneticMnFe2O4 spinel ferrite nanocrystallites. Journal of Physical Chemistry B 104 (2000) 1141-1145.

5.Liu C, Zhang ZJ. Size-dependent superparamagneticproperties of Mn spinel ferrite nanoparticles synthesizedfrom reverse micelles. Chemistry of Materials 13 (2001)2092-2096.

6.Rondinone AJ, Liu C, Zhang ZJ, Determination of magneticanisotropy distribution and anisotropy constant ofmanganese spinel ferrite nanoparticles. Journal of Physical Chemistry B 105 (2001) 7967-7971.

7.Vestal CR, Song Q, Zhang ZJ. Effects of interparticleinteractions upon the magnetic properties of CoFe2O4 andMnFe2O4 nanocrystals. Journal of Physical Chemistry B108 (2004) 18222-18227.

8.Vestal CR, Zhang ZJ. Effects of surface coordinationchemistry on the magnetic properties of MnFe2O4 spinelferrite nanoparticles. Journal of American Chemical Society 125 (2003) 9828-9833.

9.Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Chen Z, Hsu K, Cai Z, Ziemer K, Vittoria C, Harris VG. EnhancedNeel temperature in Mn ferrite nanoparticles linked togrowth-rate-induced cation inversion. Nanotechnology 20(2009) 185704-185713.

10.Aslibeiki B, Kameli P, Salamati H, Eshraghi M, Tahmasebi, T.Superspin glass state in MnFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials 322 (2010) 2929-2934.

11.Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS,Mollwitz B, Sperling RA, Reimer R, Hohenberg H, ParakWJ, Förster S, Beisiegel U, Adam G, Weller H. Size andsurface effects on the MRI relaxivity of manganese ferritenanoparticle contrast agents. Nano Letters 7 (2007) 2422-24 2 7.

12.Caruntu D, Remond Y, Chou NH, Jun MJ, Caruntu G, He J,Goloverda G, O’Connor C, Kolesnichenko V. Reactivity of3D transition metal cations in diethylene glycol solutions:Synthesis of transition metal ferrites with the structureof discrete nanoparticles complexed with longchaincarboxylate anions. Inorganic Chemistry 41 (2002) 6137–6146.

13.Hosseini SH, Mohseni SH, Asadnia A, Kerdari H. Synthesisand microwave absorbing properties of polyaniline /MnFe2O4 nanocomposite. Journal of Alloys and Compounds 509 (2011) 4682–4687.

14 .Umut E, Coşkun M, Pineider F, Berti D, Güngüneş H. Nickelferrite nanoparticles for simultaneous use in magneticresonance imaging and magnetic fluid hyperthermia, Journal of Colloid and Interface Science 5520 (2019) 199-209.

15.Dormann JL, Bessais L, Fiorani D. A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. Journal of Physics C 21 (1988) 2015-2034.

16.Vogel H. The law of relation between the viscosity of liquids and the temperature. Physikalische Zeitschrift 22 (1921)645-646.

17.Fulcher GS. Analysis of recent measurements of viscosityof glasses. Journal of American Ceramics Society 8 (1925)339-355.

18.Tammann G, Hesse W. The dependence of viscosity uponthe temperature of supercooled liquids. Zeitschrift fürAnorganische und Allgemeine Chemie 156 (1926) 245-257.

19.Kneller EF, Luborsky FE. Particle size dependence ofcoercivity and remanence of single-domain particles.Journal of Applied Physics 34 (1963) 656-658.

20.Osman NSE, Moyo T. Temperature dependence of coercivity and magnetization of Sr1/3Mn1/3Co1/3Fe2O4 ferritenanoparticles. Journal of Superconductivity and NovelMagnetism 29 (2016) 361–366.

21.Chatterjee BK, Ghosh CK, Chattopadhyay KK. Temperature dependence of magnetization and anisotropy in uniaxialNiFe2O4 nanomagnets: Deviation from the Callen-Callenpower law. Journal of Applied Physics 116 (2014) 153904.

22.Kaplan H. A spin-wave treatment of the saturationmagnetization of ferrites. Physical Review 86 (1952) 121.

23.Masina P, Moyo T, Abdallah HMI. Synthesis, structure andmagnetic properties of ZnxMg1-xFe2O4 nanoferrites.Journal of Magnetism and Magnetic Matterials 381 (2015)41.

24.Gao RR, Zhang Y, Yu W, Xiong R, Shi J. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particlessynthesized by the thermal decomposition method. Journal of Magnetism and Magnetic Matterials 324 (2012) 2534-2538.

25.Yoshida Y, Langouche G. (Eds.) Mössbauer Spectroscopy.Springer, 2013.26.Semenov VG, Panchuk VV. Mössbauer Spectra ProcessingProgram MossFit (private communication)
Published
2019-12-31
How to Cite
Umut, E. (2019). Magnetic Properties of Manganese Ferrite (MnFe2O4) Nanoparticles Synthesized by Co-Precipitation Method. Hittite Journal of Science & Engineering, 6(4), 243-249. Retrieved from https://www.hjse.hitit.edu.tr/hjse/index.php/HJSE/article/view/398
Section
SCIENCE