Explicit Solutions of a Three-Dimensional System of Nonlinear Difference Equations

Bahriye Yılmazyıldırım\(^a\), Durhasan Turgut Tollu\(^b\)

\(^a\)Necmettin Erbakan University Graduate School of Natural and Applied Science, Turkey
\(^b\)Necmettin Erbakan University, Department of Mathematics-Computer Sciences, Konya, Turkey

Abstract

In this paper, we show that the system of difference equations

\[
x_{n+1} = \frac{x_{n}+y_{n}}{1+x_{n}y_{n}}, \quad y_{n+1} = \frac{y_{n}+z_{n}}{1+y_{n}z_{n}}, \quad z_{n+1} = \frac{z_{n}+x_{n}}{1+z_{n}x_{n}}, \quad n \in \mathbb{N}_0,
\]

where the initial values \(x_0, y_0, z_0\) are real numbers, are solvable in explicit form via some changes of variables and tricks. Also, we determine the forbidden set of the initial values \(x_0, y_0, z_0\) for the above mentioned system and investigate asymptotic behavior of the well-defined solutions by using these explicit formulas.

Keywords: Asymptotic behavior; explicit solution; rational difference equation; system

AMS Classification:

39A10

Introduction

Nonlinear difference equations constitute an important class of difference equations and studying of this kind of equations have recently attracted great interest. One can see this in some recent studies. See, for example [2-4,7-8,15-16,18,24-27]. Particularly, there have been a renewed interest on solvable ones of such equations and systems. For example, published papers on solvability of some types can be found in the references [5-6,10-14,28,31]. Additionally, there are some equations and systems whose solvability are newly discovered. For example, the solvability of the nonlinear difference equation

\[
x_{n+1} = \frac{a + x_{n}x_{n-1}}{x_{n} + x_{n-1}}, \quad n \in \mathbb{N}_0,
\]

where \(a \in [0, \infty)\) and the initial values \(x_1, x_0\) are real numbers, which was studied by Xianyi and Deming in [29], is newly discovered. The fact remains that the equations and the systems in the references [1,19-21,23,30], are so.

Our aim in this study is to show that the following systems of difference equations

\[
x_{n+1} = \frac{x_{n}+y_{n}}{1+x_{n}y_{n}}, \quad y_{n+1} = \frac{y_{n}+z_{n}}{1+y_{n}z_{n}}, \quad z_{n+1} = \frac{z_{n}+x_{n}}{1+z_{n}x_{n}}, \quad n \in \mathbb{N}_0,
\]

where real initial values \(x_0, y_0, z_0\) are real numbers, can be solved in explicit form. Also, we determine the forbidden set of the initial values \(x_0, y_0, z_0\) for the system and investigate asymptotic behavior of the well-defined solutions by using these explicit formulas.

Definition

Let

\[
x_{n+1} = f(x_n, y_n, z_n), \quad y_{n+1} = g(x_n, y_n, z_n), \quad z_{n+1} = h(x_n, y_n, z_n),
\]

where \(f : \mathbb{R}^3 \to \mathbb{R}, g : \mathbb{R}^3 \to \mathbb{R}\) and \(h : \mathbb{R}^3 \to \mathbb{R}\) is given functions, be a system of difference equations of first-order, and \(D_f, D_g\) and \(D_h\) be the domains of the functions \(f, g\) and \(h\), respectively. Forbidden set of difference equation (3) is given by

\[
F = \left\{ (x_0, y_0, z_0) \in \mathbb{R}^3 : (x_i, y_i, z_i) \in D \text{ for } i \in [0, n-1], n \in \mathbb{N}_0, \text{ and } (x_n, y_n, z_n) \notin D \right\}
\]
where \(D := D_1 \times D_2 \times D_3 \). This set contains all the initial values which causes the undefinable solutions of the system. That is, the initial values chosen from the complement of the forbidden set always produce the well-defined solutions.

RESULTS

In this section, we give our main results by obtaining the general solution in explicit form of the system (2). Next, we determine the forbidden set of the initial values \(x_0, y_0, z_0 \) for the system (2). Additionally, we investigate asymptotic behavior of the well-defined solutions by using their explicit formulas.

The Explicit General Solution Of The System

To solve the system (2), we apply the changes of variables

\[
x_0 = e^{\alpha x}, \quad y_0 = e^{\gamma y}, \quad z_0 = e^{\alpha z},
\]

to the system. Then, we have the linear system

\[
u_{0i+1} = u_i + v_i, \quad v_{0i+1} = v_i + w_i, \quad w_{0i+1} = w_i + u_i, \quad n \in \mathbb{N}_0 \quad (5)
\]

The system (5) can be written as

\[
u_{0i} - 3u_{0i+2} + 3u_{0i+1} - 2u_i = 0, \quad n \in \mathbb{N}_0 \quad (6)
\]

\[
v_{0i} - 3v_{0i+2} + 3v_{0i+1} - 2v_i = 0, \quad n \in \mathbb{N}_0 \quad (7)
\]

and

\[
w_{0i} - 3w_{0i+2} + 3w_{0i+1} - 2w_i = 0, \quad n \in \mathbb{N}_0 \quad (8)
\]

which are disjoint. Note that the equations (6)-(8) are in the same form. Therefore, we only solve one of them. Let choose Eq. (6) which can be written as

\[
u_{0i} - 3u_{0i+2} + 3u_{0i+1} - 2u_i = 0, \quad n \in \mathbb{N}_0 \quad (9)
\]

Set \(u_{0i} - 2u_{0i+1} = \tilde{u}_i \), So, we get the linear equation of order two

\[
u_{0i+1} = \tilde{u}_i - \tilde{u}_{i-1}, \quad n \in \mathbb{N}_0, \quad (i = 0, 5)
\]

Eq. (9) is periodic with period 6 such that \(\tilde{u}_{i+6} = \tilde{u}_i \). (i = 0, 5) which implies

\[
u_{0i} - 2u_{0i+1} = u_{i-2} - 2u_{i-1}, \quad n \in \mathbb{N}_0 \quad (10)
\]

By adding the backward iterate of (10) to own itself, we get

\[
u_{0i} - 2u_{0i+1} + u_{0i+1} - 2u_{0i} = u_{i-2} - 2u_{i-1} + u_{i+1} - 2u_i
\]

or

\[
u_{0i} - 2u_{0i+1} - u_{0i+1} - 2u_{0i} = u_{i-2} - u_{i-1} - 2u_i, \quad n \in \mathbb{N}_0 \quad (11)
\]

Eq. (6) can be also written in the further form

\[
u_{0i+3} - u_{0i+2} + u_{0i+1} - 2(u_{0i+2} - u_{0i+1} + u_i) = 0. \quad (12)
\]

If we apply the change of variables

\[
u_{0i+3} - u_{0i+2} + u_{0i+1} = \tilde{u}_i
\]

to Eq. (12), then, from Eq. (12), it follows that

\[
\tilde{u}_{0i} - 2u_{i} = 0
\]

whose the general solution is given by

\[
u_{i} = 2^i \tilde{u}_0
\]

which implies

\[
u_{0i+3} - u_{0i+2} + u_{0i+1} = 2^i (u_{2} - u_{1} + u_{i}). \quad (16)
\]

Eq. (16) can be decomposed in terms of its own subscript as follows;

\[
u_{0i+3} - u_{0i+2} + u_{0i+1} = 2^i (u_{2} - u_{1} + u_{i}), \quad i = 0, 5
\]

By subtracting (11) from (17), we get the formula

\[
u_{0i} = \frac{1}{3} \left(2^{i+1}(v_i + u_i) - (v_{i+1} - 2u_{i+1}) \right), \quad i = 0, 5
\]

for the solution \(\nu_i \) of Eq. (6). We also state the formula (18) explicitly such that

\[
u_{0i+3} - u_{0i+2} + u_{0i+1} = 2^i (u_{2} - u_{1} + u_{i}). \quad (17)
\]

for \(n \in \mathbb{N}_0 \). Consequently, by the change of variables

\[
x_i = \frac{\tilde{u}_i}{2^i}, \quad n \in \mathbb{N}_0
\]

we have the formulas

\[
x_{0i} = 1 - \frac{2}{\left(\frac{1+\gamma}{\gamma} \right)^{\frac{n+1}{2}} \left(\frac{1+\gamma}{\gamma} \right)^{\frac{n+1}{2}}}, \quad i = 0, 5
\]

\[
x_{0i+1} = 1 - \frac{2}{\left(\frac{1+\gamma}{\gamma} \right)^{\frac{n+1}{2}} \left(\frac{1+\gamma}{\gamma} \right)^{\frac{n+1}{2}}}, \quad i = 0, 5
\]
The formulas of the variable \(x_0 \), for \(n \in \mathbb{N}_0 \), The formulas of \(y_0 \) can be obtained by the first equation of (2). That is, by solving \(y_0 \) in this equation, we have

\[
y_0 = y_{x_0+1} - y_{x_0},
\]

From (25)-(31), it follows that

\[
y_{x_0+1} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+2} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+3} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+4} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+5} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

which are the formulas of the variable \(x_0 \), for \(n \in \mathbb{N}_0 \), along with (32)-(38).

\[
\text{The Forbidden Set Of The Initial Values}
\]

The above obtained formulas exactly determine the solutions of the system (2). But, some initial values yield undefinable solution of the system. Now, we give the set of such initial values by using the formulas. To do this, we use the changes of variables (3) along with the formula (18) and so get the closed formula of \(x_0 \) as follows:

\[
x_{x_0+1} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
x_{x_0+2} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
x_{x_0+3} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
x_{x_0+4} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
x_{x_0+5} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

for \(n \in \mathbb{N}_0 \), Similarly, from the second equation of (2), we obtain

\[
z_0 = z_{x_0+1} - z_{x_0},
\]

which yields

\[
z_{x_0+1} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+2} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+3} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+4} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+5} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

for \(i = 0,5 \) and \(n \in \mathbb{N}_0 \), It is easy to see that the formula (39) is undefinable, if

\[
\left(1 + y_{x_0}\right) \left(1 + y_{y_0}\right) \left(1 + y_{z_0}\right) \left(1 + y_{x_0}\right) = -1
\]

for \(i = 0,5 \) and \(n \in \mathbb{N}_0 \). Similarly, we have the closed formulas of \(y_0 \) and \(z_0 \) as follows

\[
y_{x_0+1} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+2} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+3} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+4} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
y_{x_0+5} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

for \(i = 0,5 \) and \(n \in \mathbb{N}_0 \) respectively. Consequently, we find the forbidden set of the initial values \(x_0, y_0, z_0 \) as follows:

\[
z_{x_0+1} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+2} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+3} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+4} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]

\[
z_{x_0+5} = 1 - \frac{2}{(1 + y_{x_0}) (1 + y_{y_0}) (1 + y_{z_0}) (1 + y_{x_0}) + 1}
\]
Asymptotic Behavior Of The Well-Defined Solutions

We investigate the asymptotic behavior of the well-defined solutions of the system (2). The main result of this subsection is given by the following theorem.

Theorem

Suppose that the sequence \((x_n, y_n, z_n)_{\text{act}}\) is a well-defined solution of the system (2), that is, \((x_n, y_n, z_n) \notin F\), then,

\[
\lim_{n \to \infty} \left(\left| x_n \right|, \left| y_n \right|, \left| z_n \right| \right) = (1, 1, 1).
\]

Proof

To prove, we use the function \(f(x) = \frac{1}{2}x\) along with the formulas (39)-(41). Before proving, we can say that the points \((0, 0, 0), (1, 1, 1)\) and \((-1, -1, -1)\) are equilibrium points of the system (2). That is, equilibrium solutions of the system (system) are given by \((x_n, y_n, z_n)_{\text{act}} = (0, 0, 0)\), \((x_n, y_n, z_n)_{\text{act}} = (1, 1, 1)\) and \((x_n, y_n, z_n)_{\text{act}} = (-1, -1, -1)\), respectively. We here deal with nonequilibrium solutions of the system (2). We observe for the function \(f\) that if \(x \in (-\infty, 0)\), then \(f(x) \in (-1, 1)\); if \(x \in (0, 1)\cup(1, \infty)\), then \(f(x) \in (-\infty, -1)\cup(1, \infty)\). Hence, we prove the theorem in three cases:

(i) If \(x_n, y_n, z_n \in (-\infty, 0) \setminus F\), then \(f(x_n), f(y_n), f(z_n) \in (-1, 1)\). Therefore, from the formulas (39)-(41), we get the limit

\[
\lim_{n \to \infty} (x_n, y_n, z_n) = (1, 1, 1), \quad \text{as } n \to \infty.
\]

(ii) If \(x_n, y_n, z_n \in (0, 1) \cup (1, \infty) \setminus F\), then \(f(x_n), f(y_n), f(z_n) \in (-\infty, -1) \cup (1, \infty)\). Therefore, from the formulas (39)-(41), we get

\[
\lim_{n \to \infty} (x_n, y_n, z_n) = (-1, -1, -1).
\]

(iii) If \(x_n, y_n, z_n \in (-\infty, 0) \setminus F\), then we can not say about the quantities \(f(x_n), f(y_n)\) and \(f(z_n)\) exactly. But, the sequences

\[
s_n^{(1)} = \begin{cases}
 1 + \frac{x_n}{1 - x_n} & \text{if } 1 + y_n \in (-\infty, 0) \\
 1 + z_n & \text{if } 1 - z_n \in (-\infty, 0) \\
 \frac{1 + x_n}{1 - x_n} & \text{if } 1 + y_n \in (0, 1) \\
 \frac{1 + z_n}{1 - z_n} & \text{if } 1 - z_n \in (0, 1) \\
 \frac{1 + y_n}{1 - y_n} & \text{if } 1 - y_n \in (0, 1) \\
 \frac{1 + z_n}{1 - z_n} & \text{if } 1 - z_n \in (0, 1)
\end{cases}
\]

and

\[
s_n^{(2)} = \begin{cases}
 1 + \frac{x_n}{1 - x_n} & \text{if } 1 + y_n \in (-\infty, 0) \\
 1 + z_n & \text{if } 1 - z_n \in (-\infty, 0) \\
 \frac{1 + x_n}{1 - x_n} & \text{if } 1 + y_n \in (0, 1) \\
 \frac{1 + z_n}{1 - z_n} & \text{if } 1 - z_n \in (0, 1) \\
 \frac{1 + y_n}{1 - y_n} & \text{if } 1 - y_n \in (0, 1) \\
 \frac{1 + z_n}{1 - z_n} & \text{if } 1 - z_n \in (0, 1)
\end{cases}
\]

tend to either to 0 or to \(\infty\). So, by the formulas (39)-(41), we obtain the limit

\[
\lim_{n \to \infty} \left(\left| x_n \right|, \left| y_n \right|, \left| z_n \right| \right) = (1, 1, 1).
\]

which completes the proof.

References

