Cationic Dye Degradation by Means of an Efficient Photocatalyst Promoted by Aluminum Oxide

Kinyas Polat
Dokuz Eylul University, Department of Chemistry, Tinaztepe, Izmir, TURKEY.

A visible active magnetically separable two component MgFe2O4-Al2O3/Ag3VO4 photocatalyst was prepared in order to improve the catalytic activity of Ag3VO4 by utilizing Al2O3 (NPs Al2O3) adsorbent. Catalyst was characterized by using Fourier Transform Infrared spectrometer (FTIR). Photocatalytic activity of MgFe2O4-Al2O3/Ag3VO4 was measured by methylene blue (MB) degradation under visible light illumination emitted from 105 W tungsten light bulb. UV-vis spectrophotometer was employed to follow and identify the MB degradation and kinetics. Results suggested a first order kinetic model for the degradation having rate constant k, 0.03252 min$^{-1}$. The half-life of catalytic degradation was found as 21.3 min. The photocatalytic activity of the neat Ag3VO4 was also measured and compared with the MgFe2O4-Al2O3/Ag3VO4. It was observed that rate constant of the degradation obtained with Ag3VO4 was 0.01577 min$^{-1}$ and its half life 43.9 min. This revealed that an approximately twofold increase attained by using efficient nano Al2O3 adsorbent. At the end of the reaction the catalyst particles were removed easily from the aqueous solution by a magnet.

Keywords:
Visible active photocatalyst, Methylene blue, Magnetic nanoparticle, First order kinetic, Degradation

INTRODUCTION

Rapid industrialization together with unconsciousness about environmental issues, business concerns and several other reasons prevent the factories to take robust preventing measures for released chemicals to water resources. This situation exposes extremely important health risk on the aquatic environment. Therefore, efficient technologies have to be employed to get rid of this problem. Recently photocatalytic degradation technologies by means of heterogeneous catalysis are of interest of the scientists. TiO$_2$ is the most heavily investigated photocatalysis to remove the dyes and other toxic chemicals from aqueous solutions up to now due to low cost, high chemical stability, high photoactivity and non-toxicity [1-3]. However, TiO$_2$ is only active under UV-light illumination which restricts to benefit from huge visible region of the solar spectrum because of its large band gap. Therefore, it is very important to develop photocatalysts sensitive to visible region. Several catalysts have been reported recently including BiVO$_4$, Bi$_2$O$_3$/BiO$_x$, g-C$_3$N$_4$/BiOCl, Br$_x$, Ag/Ag$_2$CO$_3$-rGO, g-C$_3$N$_4$/WO$_3$ [4-9]. Among them Ag$_3$VO$_4$ attracts a lot of interest by scientist due to the appropriate band gap for the visible light adsorption, although photocatalytic activity of the catalyst is not sufficient due to the fast recombination. Recent efforts have been directed towards increasing the activity by using several strategies such as metal doping together with hybridizing [10-12], nanostructure engineering and using fast mediators such as graphene oxide and MoS$_2$ [13-15]. Other efficient strategy is combining photocatalytic material with a good adsorbent. By using this technique, the adsorption provides pre-concentration of molecules near the active sites of photocatalyst [16]. Other important issue in the heterogeneous catalysis is the easy separation of catalyst from the medium without using conventional ways such as filtration and membrane separation. Therefore, recently MgFe$_2$O$_4$ nanoparticles have attracted interest of the scientist [17,18].

In this study magnetic MgFe$_2$O$_4$ particles and Al$_2$O$_3$ were used for the first time as an efficient adsorbent to improve the photocatalytic activity of Ag$_3$VO$_4$ in methylene blue degradation under visible light illumination from the aqueous solution.
MATERIALS AND METHODS

FeCl$_2$.4H$_2$O, FeCl$_3$.6H$_2$O, Mg(OAc)$_2$.4H$_2$O, NH$_3$ 25 % solution and NaOH were taken from Merck. Al$_2$O$_3$, AgNO$_3$ and V$_2$O$_5$ were purchased from Aldrich.

Photocatalyst synthesis

V$_2$O$_5$ mixed with NaOH as 1:6 molar ratios in a round bottom flask by adding enough distilled water through continuous magnetic agitating. Then AgNO$_3$ solution was added resulting in yellow-orange precipitate. The related chemical reactions can be given as;

\[V_2O_5 + 6OH^- \rightarrow 2VO_4^{3-} + 3H_2O \]

\[3Ag^+ + VO_4^{3-} \rightarrow Ag_3VO_4 \]

The precipitate was left for 24 h at room temperature and washed with excess deionized water and dried at 70 °C. Calcination of the dried and cleaned precipitate was carried out at 300 °C for 4 h [19]. MgFe$_2$O$_4$ particles were synthesized by putting Al$_2$O$_3$ particles into the mixture of FeCl$_2$.4H$_2$O and FeCl$_3$.6H$_2$O in deionized water in oxygen-free Nitrogen atmosphere. Approximately 10 min later 25 % aqueous NH$_3$ (10 mL) was poured and stirred resulting in Fe$_3$O$_4$ particles. Co-precipitation occurred by subsequent drop wise addition of Mg(OAc)$_2$.4H$_2$O to the suspension. Mg(OH)$_2$ was the final precipitate through addition of 1 M aqueous NaOH. The powder was cleaned with deionized water, filtered, dried and calcined at 300 °C for 2 hours [21].

Photocatalytic performance evaluation

In order to determine the photocatalytic activity, MB solution including catalyst particles were illuminated under visible light of 105 W tungsten light bulb. MB concentration and the volume of the solution were 1x10$^{-5}$ M and 50 mL. Photocatalyst was exposed to visible light at top of the continuously stirred beaker. Absorbance of the clear supernatants taken from the beaker at several time intervals was recorded at 664 nm wavelength by using a UV-visible spectrophotometer.

RESULTS AND DISCUSSION

Photocatalytic degradation mechanism

MB degradation or oxidation by visible light in the presence of a photocatalysis takes place mainly due to the creation of active species, such as peroxy and hydroxyl radicals. By the attack of these radicals, MB molecule is mineralized into nontoxic products [22, 23]. A general mechanism reported frequently [23] can be given below;

\[\text{O}_2 + e_{CB} \rightarrow O_2^- \]

\[H_2O + h_{VB} \rightarrow OH + H^+ \]

\[\text{Catalyst} + h_{VB} \text{excitation} \rightarrow (e_{CB} + h_{VB}) \]

\[\text{H}_2\text{O} + h_{VB} \rightarrow \text{OH} + \text{H}^+ \]

\[O_3 + e_{CB} \rightarrow O_2 \]

\[O_2^- + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 \]

\[\text{OH or HOO} + \text{MB} \rightarrow \text{inorganic degradation products of MB} \]

The reaction mechanism that converts MB into final products may be represented as in the Figure 1.

Kinetics of photocatalysis

Langmuir–Hinshelwood (L–H) model is generally fitted to derive the kinetic model of the photocatalysis reactions. If MB concentration is maintained at low levels, degradation usually follows first order kinetic model [24, 25]. L-H kinetic expression is given in the equation 1.

\[r = \frac{dC}{dt} = \frac{kKC}{1 + KC} \quad (1) \]

In the L-H equation, r is the observed reaction rate, k is the intrinsic reactivity constant, K is the equilibrium adsorption constant, C is the reactant concentration. L-H expression can be reduced to first order kinetic equation for dilute solutions (1+KC equals to 1);

![Figure 1. Schematic representation of a degradation mechanism of MB under visible light](image)

![Figure 2. FTIR spectrums for MgFe$_2$O$_4$.Al$_2$O$_3$.Ag$_3$VO$_4$ and its individual ingredients](image)
\[r = \frac{dC}{dt} = -k_g C \]

Integrating the equation 2 from \(C \) to \(C_0 \) (initial concentration of the dye) gives the linear relation of first order kinetic equation;

\[\ln \left(\frac{C}{C_0} \right) = -k_g t \]

\(C \) is the concentration of MB at time \(t \), \(k_g \) is the observed rate constant. A plot of \(\ln(C/C_0) \) versus \(t \) produces a linear relationship, the slope gives the observed rate constant, \(k_g \). Half-life of the degradation is calculated by;

\[[\text{Ochratoxin A}](\mu g/ml) = \frac{\text{Abs}(333\text{nm}) \times \text{Molecular Weight} \times 1000}{\text{Ochratoxin A Extinction Coefficient}} \]

\[= \frac{\text{Abs}(333\text{nm}) \times 403 \times 1000}{5550} \]

\[= \text{Abs}(333\text{nm}) \times 72.6 \]

Structural identity by FTIR

FTIR spectrums were collected as 50 scans at 4cm\(^{-1}\) resolution between 4000 and 400 cm\(^{-1}\) with a Perkin Elmer Spectrum BX-II FTIR spectrometer.

The absorption bands (Figure 2) at 3464-3378 cm\(^{-1}\) and 1637 cm\(^{-1}\) are due to the O-H stretching vibration of H\(_2\)O remaining after calcination. 2924 cm\(^{-1}\) and 1046 cm\(^{-1}\) represent the stretching and bending vibrations of C-H as impurities. The peak at 2364 cm\(^{-1}\) stands for the CO\(_2\) in the air [26]. Specific bands observed at 606 and 460 cm\(^{-1}\) correspond to the metal-oxygen bonds in the tetrahedral and octahedral sites and suggest that MgFe\(_2\)O\(_4\) has spinel structure [27-29]. In the spectrum of MgFe\(_2\)O\(_4\)/NPs-Al\(_2\)O\(_3\), metal-oxygen band intensities showed a clear decrease. In the FTIR spectrum of Ag\(_3\)VO\(_4\), 714 cm\(^{-1}\) and 855 cm\(^{-1}\) bands are due to the Ag\(_3\)VO\(_4\). Absorptions at 923 cm\(^{-1}\) and 967 cm\(^{-1}\) represent the symmetric vibrations and 855 and 714 cm\(^{-1}\) represent the asymmetric stretching vibrations of V-O bonds in VO\(_3\), respectively.

MB photocatalytic degradation

Photocatalytic MB degradation performance of MgFe\(_2\)O\(_4\)-Al\(_2\)O\(_3\)/Ag\(_3\)VO\(_4\) was tested under visible light source. Remaining dye concentration in the aqueous solution upon interaction with light was measured by UV-vis spectrophotometer at 664 nm where the dye absorption reaches a maximum. The initial MB concentration was \(1 \times 10^{-5} \) M. The catalyst weight was 0.1 g. The change of MB degradation with time (Figure 3) suggests that an efficient reaction takes place upon irradiation with fast reduction in concentration of MB. Kinetic model of the degradation as seen from Figure 4 obeys to first order kinetics. Rate constant \(k \) was found to be 0.03252 min\(^{-1}\) and corresponding half-life which MB concentration decreases to half of its initial value is 21.3 min. During the experiment a methylene blue witness sample at the same concentration was placed near the main sample to
indicate whether the experimental conditions have effect on the degradation. As seen from the Figure 4, MB blue concentration does not change during the experiment verifying that without catalyst no degradation occurs that stem from the experimental conditions.

For evaluating the effect of Al$_2$O$_3$ to the catalytic performance Ag$_3$VO$_4$ was tested separately. The change of MB concentration with time was given in Figure 5. The change of ln(C/C$_0$) with time was also given in Figure 6 to identify the rate constant of degradation. It is clear that MB blue degradation with Ag$_3$VO$_4$ lasts longer than that of MgFe$_2$O$_4$-Al$_2$O$_3$/Ag$_3$VO$_4$ when Figures 3 and Figure 5 are compared. Figure 6 suggest that degradation kinetics correspond to first order model again. Rate constant of the degradation with Ag$_3$VO$_4$ was 0.01577 min$^{-1}$. Half life was found as 43.9 min.

CONCLUSION

In this study visible active, magnetic MgFe$_2$O$_4$-Al$_2$O$_3$/Ag$_3$VO$_4$ photocatalyst was successfully synthesized and tested against MB degradation under visible light illumination by 105 W tungsten light bulb. The study showed that adsorbent (Al$_2$O$_3$ particles) adding strategy produced positive result in enhancing the photocatalytic activity of Ag$_3$VO$_4$ almost twofold. Reaction rate as inferred from the half life time of degradation with MgFe$_2$O$_4$-Al$_2$O$_3$/Ag$_3$VO$_4$ catalyst which is 21.3 min was nearly half of that (43.9 min) with neat Ag$_3$VO$_4$. Corresponding reaction rate constants, k for MgFe$_2$O$_4$-Al$_2$O$_3$/Ag$_3$VO$_4$ and Ag$_3$VO$_4$ were identified as 0.03252 min$^{-1}$ and 0.01577 min$^{-1}$, respectively. The kinetic model of the MB degradation by these catalyst was well fitted by first order kinetics. The catalyst introduced in this study proved that it can be removed easily from the aqueous solution by a magnet bar due to the magnetic particles of MgFe$_2$O$_4$ eliminating the difficult conventional separation techniques.

ACKNOWLEDGEMENTS

I want to thank Prof.Dr.Mürüvvet Yurdakoc for valuable helps and to her MSc student Yıldıray Aldemir.

REFERENCES

Figure 6. First order kinetic model fitting of MB degradation with Ag$_3$VO$_4$.

Figure 7. Photograph of the MB degradation steps under visible light.

Figure 7. Photograph of the MB degradation steps under visible light.

17. Iliya A, Maryam M, Nahid R. MgFe2O4 and MgFe2O4/ZnFe2O4 coated with polyaniline as a magnetically separable photocatalyst for removal of a two dye mixture in aqueous solution. Research on Chemical Intermediates 43 (2017) 4459–4474.

